The Truth of a Procedure
 Lisa Lippincott

Why don't we routinely write down the reasoning behind our programs in a formal way, and have computers check it?

The mathematical tools we use for proofs present a poor user interface for procedural programming.

Logic

Procedural Logic

A procedure is an embodied algorithm, conceived as a scheme by which events may be arranged in time, space, possibility and causality.

Procedures are sentences.

A sentence is a statement about the world, which may either be in agreement with the world ("true") or be in disagreement with the world ("false").
(false and true) or ((true or false) and true) Sentence

or :) makes a choice

and
 딩 makes a choice

true

The code here is written in a fantasy C++, with extensions that make proofs fit into the code.

const int factorial(const int\& n) interface
\{ claim $\mathrm{n}>=0$; claim usable(n);
implementation;
claim usable(n); claim usable(result);
\}
const int factorial(const int\& n) interface

```
claim n >= 0;
```


claim usable(n);

implementation;

```
claim usable( n );
claim usable( result );
}
```

claim statements are assertions that must hold for local reasons.

Yellow claims for reasons in this function; purple claims for reasons in other functions.

중: If a claim statement fails, the current player loses.
const int factorial(const int\& n) interface
\{ claim $\mathrm{n}>=0$;
claim usable(n);
implementation;
claim usable(n); claim usable(result); \}

An Ivalue is usable if it may be used in the usual manner for its cv-qualified type.

Usable scalar Ivalues

- have a stable value (if not volatile), and
— are modifiable (if not const).

Class types may have more complicated rules for usability.
const int factorial(const int\& n) interface
\{ claim $\mathrm{n}>=0$; claim usable(n);
implementation;
claim usable(n); claim usable(result); \}

If an operation is used in the procedure, its interface is part of the game.

We'll start the game with the interface of operator>=(const int\&, const int\&).

The current player announces the value of each usable Ivalue.

The value of a is six.
And the value of b is zero.
const bool operator>=(const int\& a, const int\& b)
interface
\{
claim usable(a); claim usable(b);
implementation;
claim usable(a); claim usable(b); claim usable(result);
\}

If the object hasn't been changed, the player must repeat the previous value.


```
a is still six, and \(b\) is still zero. And the result is true.
```

(7): Unexpectedly changing a value is penalized.
const bool operator>=(const int\& a, const int\& b)
interface
\{
claim usable(a); claim usable(b);
implementation;
claim usable(a); claim usable(b); claim usable(result); \}
const int factorial(const int\& n) interface
\{ claim $\mathrm{n}>=0$; claim usable(n); implementation;
claim usable(n); claim usable(result);
const int factorial(const int\& n) implementation
\{
int $r=1$;
for (int $\mathrm{i}=\mathrm{n}$; i ! $=0$; --i $)$
if (can_multiply(r, i))
$r^{*}=i$;
else
throw factorial_overflow();
return r;
\}

When substitutable is claimed, Ivalues must have identical values.

int::int(const int\& a) interface
$\{$
The value of a is one.
a and *this are both one.
The value of a is one, and *this is one. *this can be changed.

Inline functions without declared interfaces are played by the entering player.

Sometimes showing what a function does is simpler than describing it. But this also makes the program brittle!
inline
const bool operator!=(const int\& a, const int\& b)

```
{
```

 return !(\(\mathrm{a}==\mathrm{b}\));
 \}
inline
const bool operator!(const bool\& c)
\square
return c ? false : true;
\}

Branch directions are also part of the direct input and output.

The result is false; swerve right!

The value of a is still six, b is still zero, and the result is false.
const bool operator==(const int\& a, const int\& b)
\{ claim usable(a); claim usable(b);
implementation;
if (result)
claim substitutable(a, b);
claim usable(a); claim usable(b); claim usable(result);

Inline functions without declared interfaces are played by the entering player.

Sometimes showing what a function does is simpler than describing it. But this also makes the program brittle!
inline
const bool operator!=(const int\& a, const int\& b)
$\{$ return !($\mathrm{a}==\mathrm{b}$);
\}
inline
const bool operator!(const bool\& c)
\{
return c ? false : true;

can_multiply has a basic interface: usable input, usable output.
const bool can_multiply(const int\& a, const int\& b) interface

The value of a is one, and the value of b is six.
a is still one, and b is still six.

int\& int::operator*=(const int m) interface
\{ claim can_multiply(*this, m); claim usable(m); claim usable(*this);
implementation;
claim aliased(result, *this);
claim usable(m); claim usable(*this); claim usable(result); \}

If a function's direct input is repeated, its direct output must also be repeated.

As before, the value of a is one, and the value of b is six.
a is still one, and b is still six.
Like last time, the result is true.
중: Announcing different direct output is penalized.
const bool can_multiply(const int\& a, const int\& b)
const bool can_multiply (const int\& a,
const int\& b)
interface
\{
claim usable(a);
claim usable(b);
implementation;
claim usable(a);
claim usable(b);
claim usable(result);
\}

Lvalues are aliased when they refer to the same object.

The can_multiply claim succeeds!
The value of m is six, and while *this is currently one, it can change.
result and *this are the same object.
m is still six;
*this is now six and can change; the result is six and can change.
int\& int::operator*=(const int m) interface
\{ claim can_multiply(*this, m);
claim usable(m); claim usable(*this);
implementation;

> claim aliased(result, *this);
claim usable(m); claim usable(*this); claim usable(result); \}
(5): There is a penalty for not mentioning observable aliasing.

const bool

can_decrement(const int\& a) interface \{ claim usable(a); Six.

int\& int::operator--()

```
interface
```


implementation;
claim usable(a); claim usable(result); True.

Six; it changes.

Success!

Same object.
Both are now five;
they can change.

const int factorial(const int\& n) implementation
\{ int $r=1$;
for (int $\mathrm{i}=\mathrm{n}$; i ! $=0 ;-\mathrm{i})$
if (can_multiply(r, i))
$r^{*}=\mathrm{i}$;
else
throw factorial_overflow();
return r;
\}
const int factorial(const int\& n)
interface
\{
claim $\mathrm{n}>=0$;
claim usable(n);
implementation;
claim usable(n); claim usable(result);
n is still six.
The result is seven hundred twenty.

> In the game of truth, 50 announces the input, and :) announces the output, broadly construed.

The game of truth has five penalty conditions:
(5.): Stuck in a loop
(25): Assertion failure
(2.): Unexpected value change
(1):- Inconsistent function results

중: Unmentioned aliasing

(:) wins this game of truth

 if the first penalty goes to ©.© 5 wins this game of truth if the first penalty goes to : .
(:) wins this game of truth if the first penalty goes to 둥.
(:) has a winning strategy if the first penalty goes to 중 for all input values.
.5. wins this game of truth if the first penalty goes to : .
© [5 has winning strategy if the first penalty goes to for some input values.
(:) wins this game of truth if the first penalty goes to 홍.
: has a winning strategy if the first penalty goes to 중 for all input values.

The procedure is true if
(:) has a winning strategy.
© 5 wins this game of truth if the first penalty goes to :
© 5 has a winning strategy if the first penalty goes to for some input values.

The procedure is false if
덩 has a winning strategy.

Q: Is there always a winning strategy for some player? Or could a procedure be neither true nor false?

A: These games are topologically Borel. In a Borel game, if one player does not have a winning strategy, the other player does.
("Borel determinacy," Donald A. Martin, 1975)

Vuclidean geometry

V Algebraically closed fields (of any characteristic)
\checkmark Dense linear orderings (with or without endpoints)

The true
The false

The true

The false

The true

The true

The true
The false

The necessary
The possible
The impossible

The necessary

The possible

Undecidable
"halting problem"
programs are here.

Q: Is there some advantage we can give to 대 so that (:) wins only if the procedure is necessarily true?

A: We can put © in charge of the computer! That's the principle behind the game of necessity.

Instead of choosing values, (5) names the usable values.

The value of a is Sue.
And the value of b is Zachary.
const bool operator>=(const int\& a, const int\& b)
\{
claim usable(a); claim usable(b);
implementation;
claim usable(a); claim usable(b); claim usable(result);
\}

If the object hasn't been changed, © must repeat the previous name.

The value of a is Sue.

And the value of b is Zachary.
a is still Sue,
and b is still Zachary.
And the result is Bob. Bob the boolean.
const bool operator>=(const int\& a, const int\& b)
interface
\{
claim usable(a); claim usable(b);
implementation;
claim usable(a); claim usable(b); claim usable(result);
\}

At branches and claims,

 (5) tells us which way to go.```
const int factorial(const int& n)
interface
{
claim n >= 0;
Bob is a left-turning boolean; the claim succeeds!
claim usable(n);
implementation;
claim usable(n);
claim usable(result);
}
```

(5) must be consistent: once a boolean turns one way, it must always turn that way.

When claiming substitutability, (5) explains that both names refer to the same value.

The value of $a$ is Sam, and the value of $b$ is Fred.

Swerve left!
Fred is Sam's middle name.
Sammy-Freddy, his parents used to call him.

## True story!

const bool operator==( const int\& a, const int\& b )
interface
\{ claim usable( a ); claim usable( b );
implementation;
if ( result )
claim substitutable( $a, b$ );
claim usable( a ); claim usable( b ); claim usable( result );

## Instead of announcing values, (:) repeats names used by (5).

claim usable( f );
That's good old Charlie.

If the value wasn't named in some previous claim, :) loses.
claim usable( v ); ???

At branches and boolean claims, :) asks :- which way to go.

If © © hasn't already chosen a left turn, a boolean claim may not go well for : .
if ( can_multiply( $r, i)$ )
Which way does Betty turn?
Betty turns left at branches.
claim decrementable( a );
Which way does Eddie turn?
(3) Right! The claim fails!

# When claiming substitutability, :) reminds (5) that both names refer to the same value. 

claim substitutable( x, y );

## And here's Forn, who

 you say is called Orald by the northern men.claim substitutable( p, q );
Could Bacon be Shakespeare? substitutability, : loses.

In the game of truth, (5) announces the input, and :) announces the output, broadly construed.

In the game of necessity, 이 tells a story, and :) tells how the procedure executes within the story.

The game of necessity has seven penalty conditions:

중: Stuck in a loop
중: Assertion failure
ㅈ․ㄹ: Unexpected name change
쟁: Inconsistent result names
중: Unmentioned aliasing

당 Inconsistent branches
(:) Novel atomic claim
(:) has a winning strategy for this game of necessity if the procedure is true for all possible computers.

ㄷ․ has a winning strategy for this game of necessity if the procedure is false for some possible computer.
(Forcing, Paul Cohen, 1963)

## const bool

can_decrement( const int\& a ) interface \{ claim usable( a );
implementation;
claim usable( a ); claim usable( result); Eddie.

claim can_increment( *this ); claim aliased( *this, result );
claim usable( *this ); claim usable( result );

Q: Is there some advantage we can give to :) that's stronger than putting © in charge of the computer?

A: We can team up with :) to write the procedure! That's the principle behind the game of proof.
const int factorial( const int\& n )
implementation
\{
int $r=1$;
claim countdown_theorem( n, 0);
for ( int $\mathrm{i}=\mathrm{n}$; i ! $=0$; --i $)$
if ( can_multiply( $\mathrm{r}, \mathrm{i})$ )
$r^{*}=i$;
else
throw factorial_overflow();
return r;
\}

In this game, :) can insert claim statements into the function implementation as the game is being played.

The new claims can include calls to claimable functions implemented elsewhere.

Such functions don't affect execution, but just explain logical connections.
(Logicians call them "theorems.")

```
claimable
countdown_throrem(const int& high,
 const int& low)
interface
 {
 claim high >= low;
 claim implementation;
 for(int c = high; c != low; --c)
 {}
 }
```

How do you count down from Sue to Zachary?

To sum up: Sue >= Zachary is Bob. Which way does Bob turn?

As I said before, Bob turns left.

Sue, Frank, Faye, Ted, Terry, Ollie, and the loop ends with Zachary.
claimable countdown_throrem( const int\& high, const int\& low )
interface
\{ claim high >= low;
claim implementation;
for (int $c=$ high; $c$ ! $=$ low; --c ) $\}$ \}

In the game of truth, 50 announces the input, and :) announces the output, broadly construed.

In the game of necessity, 덩 tells a story, and :) tells how the procedure executes within the story.

In the game of proof, © tells a story while asks questions, forcing (5) to expand on the story.
(:) has a winning strategy for this game of proof if the procedure can be made necessary by adding claims to the implementation.
(Compactness)
(5) has a winning strategy for this game of proof if the procedure is false for some possible computer that obeys the claimable rules.
(Forcing, filtered colimits, finite injury)

Cf. Completeness, Kurt Gödel, 1929
const int factorial( const int\& n ) interface

```
{
claim n >= 0;
```

The trouble came from not saying what we meant at this point.
claim usable( n );
implementation;
claim usable( n );
claim usable( result );
\}

```
const int factorial(const int& n)
interface
{ for(int i=n; i!=0; --i)
 claim usable(n);
 implementation;
 claim usable(n);
 claim usable(result);
}
```

The trouble came from not saying what we meant at this point.

If the interface had expressed the precondition the function really used, there would have been no need to call a theorem.


In the big picture, there are no demons.


Questions?

