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The Truth of a Procedure



Why don’t we routinely write down the reasoning 
behind our programs in a formal way, and have  
computers check it?

The mathematical tools we use for proofs present 
a poor user interface for procedural programming.



Logic



Procedural Logic



A sentence is a statement about the world, which 
may either be in agreement with the world (“true”) 
or be in disagreement with the world (“false”).

A procedure is an embodied algorithm, conceived 
as a scheme by which events may be arranged in 
time, space, possibility and causality.

Procedures are sentences.
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This sentence is true: 
🙂 has a winning strategy.
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This sentence is true: 
🙂 has a winning strategy.

This sentence is false: 
😈 has a winning strategy.



The code here is written in a fantasy C++, with 
extensions that make proofs fit into the code.



void foo()
implementation

{
…
…
bar();
…
…

}

void bar()
interface

{
…prologue
…
implementation;
…
…epilogue

}
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const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}



const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}

claim statements are assertions 
that must hold for local reasons. 

Yellow claims for reasons in this function; 
purple claims for reasons in other functions.

👿🙁 If a claim statement fails, 
the current player loses.



const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}

An lvalue is usable if it may be 
used in the usual manner for its 
cv-qualified type.

Usable scalar lvalues 
— have a stable value (if not volatile), and 
— are modifiable (if not const). 

Class types may have more complicated 
rules for usability. 



const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}

If an operation is used in the 
procedure, its interface is part 
of the game. 

We’ll start the game with the interface of 
operator>=( const int&, const int& ). 



const bool operator>=( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

claim usable( a );
claim usable( b );
claim usable( result );

} 

😈
The value of a is six. 
And the value of b is zero.

The current player 
announces the value 
of each usable lvalue.



const bool operator>=( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

claim usable( a );
claim usable( b );
claim usable( result );

} 😈

a is still six, 
and b is still zero. 
And the result is true.

If the object hasn’t been 
changed, the player must 
repeat the previous value.

😈
The value of a is six. 
And the value of b is zero.

👿🙁 Unexpectedly changing 
a value is penalized.



const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}

😈 The value of n is six.

The result is true; the claim succeeds!

Lvalues asserted usable directly 
within the prologue provide the 
direct input to the function. 

The epilogue likewise describes 
the direct output. 



const int factorial( const int& n )
implementation

{
int r = 1;

for ( int i = n;  i != 0;  --i )
if ( can_multiply( r, i ) )

r *= i;
else

throw factorial_overflow();

return r;
}
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implementation;
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claim usable( result );

}



return r;

throw factorial_overflow();

r *= i;

if ( can_multiply( r, i ) )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

int r = 1;☞



int::int( const int& a )
interface

{
claim usable( a );

implementation;

claim substitutable( a, *this );

claim usable( a );
claim usable( *this );

}

🙂The value of a is one.

😈
The value of a is one, and 
*this is one. *this can be changed.

a and *this are both one.

When substitutable is claimed, 
lvalues must have identical values.
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inline
const bool operator!=( const int& a,

const int& b )
{
return !( a == b );

}

inline
const bool operator!( const bool& c )

{
return c ? false : true;

} 

Inline functions without 
declared interfaces are 
played by the entering 
player. 

Sometimes showing what a function 
does is simpler than describing it. 
But this also makes the program brittle!



😈

The value of a is still six, 
b is still zero, 
and the result is false.

🙂
The value of a is six, 
and b is zero.

The result is false; swerve right!

Branch directions are also part 
of the direct input and output.

const bool operator==( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

if ( result )
claim substitutable( a, b );

claim usable( a );
claim usable( b );
claim usable( result );

} 
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declared interfaces are 
played by the entering 
player. 

Sometimes showing what a function 
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But this also makes the program brittle!



return r;

throw factorial_overflow();

r *= i;

if ( can_multiply( r, i ) )

for ( int i = n;  i != 0;  --i )
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😈

a is still one, 
and b is still six. 
And the result is true.

const bool can_multiply( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

claim usable( a );
claim usable( b );
claim usable( result );

}

🙂
The value of a is one, and 
the value of b is six.

can_multiply has a basic 
interface: usable input, 
usable output.



return r;

throw factorial_overflow();

r *= i;

if ( can_multiply( r, i ) )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

int r = 1;

☞



int& int::operator*=( const int m )
interface

{
claim can_multiply( *this, m );

claim usable( m );
claim usable( *this );

implementation;

claim aliased( result, *this );

claim usable( m );
claim usable( *this );
claim usable( result );

}



😈

a is still one, 
and b is still six. 
Like last time, the result is true.

const bool can_multiply( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

claim usable( a );
claim usable( b );
claim usable( result );

}

🙂
As before, the value of a is one, 
and the value of b is six.

If a function’s direct input is 
repeated, its direct output 
must also be repeated.

👿🙁 Announcing different  
direct output is penalized.



😈

m is still six; 
*this is now six and can change; 
the result is six and can change.

int& int::operator*=( const int m )
interface

{
claim can_multiply( *this, m );

claim usable( m );
claim usable( *this );

implementation;

claim aliased( result, *this );

claim usable( m );
claim usable( *this );
claim usable( result );

}

🙂
The value of m is six, and while 
*this is currently one, it can change.

result and *this are the same object.

The can_multiply claim succeeds!

Lvalues are aliased when they 
refer to the same object.

👿🙁 There is a penalty for not mentioning observable aliasing.



return r;

throw factorial_overflow();

r *= i;

if ( can_multiply( r, i ) )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

int r = 1;

☞



😈
Six. 
True.

🙂Six.

🙂Six; it changes.

Success!

Success! 
Same object.

😈
Both are now five; 
they can change.

const bool
can_decrement( const int& a )
interface

{
claim usable( a );
implementation;
claim usable( a );
claim usable( result );

}

int& int::operator--()
interface

{
claim can_decrement( *this );

claim usable( *this );
implementation;
claim can_increment( *this );
claim aliased( *this, result );
claim usable( *this );
claim usable( result );

}



return r;

throw factorial_overflow();

r *= i;

if ( can_multiply( r, i ) )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

for ( int i = n;  i != 0;  --i )

int r = 1;

☞



const int factorial( const int& n )
implementation

{
int r = 1;

for ( int i = n;  i != 0;  --i )
if ( can_multiply( r, i ) )

r *= i;
else

throw factorial_overflow();

return r;
}

const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}



n is still six. 
The result is seven hundred twenty. 🙂

const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}



n is still six. 
The result is seven hundred twenty. 🙂

If this makes the game 
endless, 👿 loses.

Finally, 😈 can have rematches: 
if 😈 repeats the direct input, 
🙂 must repeat the direct output.  

const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}



In the game of truth, 😈 announces the input, 
and 🙂 announces the output, broadly construed.



👿🙁 Stuck in a loop 
👿🙁 Assertion failure 
👿🙁 Unexpected value change 
👿🙁 Inconsistent function results 
👿🙁 Unmentioned aliasing

The game of truth has five penalty conditions: 



🙂 wins this game of truth 
if the first penalty goes to 👿.

😈 wins this game of truth 
if the first penalty goes to 🙁.



🙂 wins this game of truth if 
the first penalty goes to 👿.

😈 wins this game of truth if 
the first penalty goes to 🙁.

🙂 has a winning strategy 
if the first penalty goes to 👿 
for all input values.

😈 has a winning strategy 
if the first penalty goes to 🙁 
for some input values.



🙂 wins this game of truth if 
the first penalty goes to 👿.

😈 wins this game of truth if 
the first penalty goes to 🙁.

🙂 has a winning strategy if 
the first penalty goes to 👿 
for all input values.

😈 has a winning strategy if 
the first penalty goes to 🙁 
for some input values.

The procedure is true if  
🙂 has a winning strategy.

The procedure is false if 
😈 has a winning strategy.



Q: Is there always a winning strategy for some player? 
Or could a procedure be neither true nor false?

A: These games are topologically Borel. In a Borel 
game, if one player does not have a winning 
strategy, the other player does.  
 
(“Borel determinacy,” Donald A. Martin, 1975)



The true The false

✅ Euclidean geometry 
✅ Algebraically closed fields (of any characteristic) 
✅ Dense linear orderings (with or without endpoints)
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The necessary The impossible The possible

Undecidable 
“halting problem” 
programs are here.  



The necessary The impossible The possible

Good programs Bad programs More bad programs

Undecidable 
“halting problem” 
programs are here.  



The necessary The impossible The possible

Good programs Bad programs More bad programs

😈🙂



Q: Is there some advantage we can give to 😈 so that 
🙂 wins only if the procedure is necessarily true?

A: We can put 😈 in charge of the computer!  
That’s the principle behind the game of necessity.



const bool operator>=( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

claim usable( a );
claim usable( b );
claim usable( result );

} 

Instead of choosing values, 
😈 names the usable values.

😈
The value of a is Sue. 
And the value of b is Zachary.



const bool operator>=( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

claim usable( a );
claim usable( b );
claim usable( result );

} 😈

a is still Sue, 
and b is still Zachary. 
And the result is Bob. Bob the boolean.

If the object hasn’t been 
changed, 😈 must repeat 
the previous name.

😈
The value of a is Sue. 
And the value of b is Zachary.



const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}

😈 Bob is a left-turning boolean; the claim succeeds!

At branches and claims, 
😈 tells us which way to go.

😈 must be consistent: once 
a boolean turns one way, it 
must always turn that way.



🙂
The value of a is Sam, 
and the value of b is Fred.

Swerve left!

When claiming substitutability, 
😈 explains that both names  
refer to the same value.

const bool operator==( const int& a,
const int& b )

interface
{
claim usable( a );
claim usable( b );

implementation;

if ( result )
claim substitutable( a, b );

claim usable( a );
claim usable( b );
claim usable( result );

} 

Sammy-Freddy, his parents 
used to call him.

Fred is Sam’s middle name.

😈 True story!



Instead of announcing values, 
🙂 repeats names used by 😈.

If the value wasn’t named in 
some previous claim, 🙁 loses.

claim usable( v ); 🤔???

claim usable( f );

🙂That’s good old Charlie.



At branches and boolean 
claims, 🙂 asks 😈 which 
way to go.

🙂Which way does Betty turn?

😈 Betty turns left at branches.

if ( can_multiply( r, i ) )

If 😈 hasn’t already chosen 
a left turn, a boolean claim 
may not go well for 🙁.

😟Which way does Eddie turn?

😈 Right! The claim fails!

claim decrementable( a );



When claiming substitutability, 
🙂 reminds 😈 that both names  
refer to the same value.

claim substitutable( x, y );
And here’s Forn, who 
you say is called Orald 
by the northern men. 🙄

If the names differ, and 
😈 didn’t already claim 
substitutability, 🙁 loses.

claim substitutable( p, q );

🤯Could Bacon be Shakespeare?



In the game of truth, 😈 announces the input, 
and 🙂 announces the output, broadly construed.

In the game of necessity, 😈 tells a story, and 🙂 
tells how the procedure executes within the story.



👿🙁 Stuck in a loop 
👿🙁 Assertion failure 
👿🙁 Unexpected name change 
👿🙁 Inconsistent result names 
👿🙁 Unmentioned aliasing

👿 Inconsistent branches 
🙁 Novel atomic claim

The game of necessity has seven penalty conditions:



🙂 has a winning strategy 
for this game of necessity 
if the procedure is true for 
all possible computers.

😈 has a winning strategy 
for this game of necessity 
if the procedure is false for 
some possible computer.
(Forcing, Paul Cohen, 1963)



☹ 😈
Sue. 
Eddie.

🙂Sue.

Which way?

const bool
can_decrement( const int& a )
interface

{
claim usable( a );
implementation;
claim usable( a );
claim usable( result );

}

😈
Right turn! 
You lose.

int& int::operator--()
interface

{
claim can_decrement( *this );

claim usable( *this );
implementation;
claim can_increment( *this );
claim aliased( *this, result );
claim usable( *this );
claim usable( result );

}



Q: Is there some advantage we can give to 🙂 that’s 
stronger than putting 😈 in charge of the computer?

A: We can team up with 🙂 to write the procedure! 
That’s the principle behind the game of proof.



🙂
for ( int i = n;  i != 0;  --i )

if ( can_multiply( r, i ) )
r *= i;

else
throw factorial_overflow();

return r;
}

const int factorial( const int& n )
implementation

{
int r = 1;

claim countdown_theorem( n, 0 );

In this game, 🙂 can insert 
claim statements into the 
function implementation as 
the game is being played.



claimable
countdown_throrem( const int& high,

const int& low )
interface

{
claim high >= low;

claim implementation;

for ( int c = high;  c != low;  --c )
{}

}

The new claims can include 
calls to claimable functions 
implemented elsewhere. 

Such functions don’t affect 
execution, but just explain 
logical connections. 

(Logicians call them “theorems.”)



claimable
countdown_throrem( const int& high,

const int& low )
interface

{
claim high >= low;

claim implementation;

for ( int c = high;  c != low;  --c )
{}

}😈
Sue, Frank, Faye, Ted, Terry, Ollie, 
and the loop ends with Zachary.

😈 As I said before, Bob turns left.
🙂

To sum up: Sue >= Zachary is Bob. 
Which way does Bob turn?

How do you count down 
from Sue to Zachary?



In the game of truth, 😈 announces the input, 
and 🙂 announces the output, broadly construed.

In the game of necessity, 😈 tells a story, and 🙂 
tells how the procedure executes within the story.

In the game of proof, 😈 tells a story while 🙂 
asks questions, forcing 😈 to expand on the story.



😈 has a winning strategy for 
this game of proof if the 
procedure is false for some 
possible computer that 
obeys the claimable rules. 
(Forcing, filtered colimits, finite injury)

🙂 has a winning strategy for 
this game of proof if the 
procedure can be made 
necessary by adding claims 
to the implementation.
(Compactness)

Cf. Completeness, Kurt Gödel, 1929



const int factorial( const int& n )
interface

{
claim n >= 0;

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}

The trouble came from not saying 
what we meant at this point.



const int factorial( const int& n )
interface

{
for ( int i = n;  i != 0;  --i )

{}

claim usable( n );

implementation;

claim usable( n );
claim usable( result );

}

If the interface had expressed 
the precondition the function 
really used, there would have 
been no need to call a theorem.

The trouble came from not saying 
what we meant at this point.



🙂 😈👿
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🤠🤠

🙂 🤠

🙂🙂

😎 🙂

😎

😎

In the big picture, there are no demons.

There are only other players, trying to win their own games.



Questions?


